
© G. Lockwood 2006 1

Encryption and Digital Signatures for A-level Computing
(originally written for the AQA CPT5 module in 2006)

There are various methods of encrypting messages, most of which use the concept of a "key". An

encryption key is a bit pattern which is used to process the "plaintext" to produce the encrypted text, or

"ciphertext". In order to decrypt this ciphertext, producing the original plaintext, a decryption key must be

used. In some algorithms, the encryption and decryption keys could be the same (a "symmetrical"

algorithm). More commonly, a pair of keys are used - either one could encrypt the plaintext, and the other

could then decrypt the ciphertext.

For CPT5 you don't need to know the details of exactly how the keys are generated, or the mathematical

way in which they are used. If you are interested, then look up the RSA algorithm, or PKI (public key

infrastructure). (A Google search will help, or the wikipedia is a good starting point). You do need to know

how the keys are used in sending secure messages, and the methods expected by the examiners are those of

PKI technology. A pair of keys are used: one is known only to one person, and is called that person's

"private" key. The other key of the pair can be released to anyone, and is therefore called that person's

"public" key. The private key should be kept secret - if it becomes known to anyone else, then security is

compromised. The degree of security that this method provides is based on the facts that

 messages encrypted with one key of the pair can be decrypted only with the other key;

 it is virtually impossible given one key to work out the other key of the pair. (This depends on the

key length, i.e. number of bits in the key, but as the key length increases, the time taken for the

fastest supercomputer to find the corresponding key also increases, and can easily reach years or

millions of years).

Simple level

Suppose B wants to send a message to A, so that only A can read the message. If only A can read it, then it

follows that it must be decrypted by A with A's private key. No-one else knows A's private key, hence only

A could decrypt it. In order that it should be decryptable by A's private key, it must have been encrypted by

the corresponding key of the pair, i.e. A's public key, which, being a public key, can be obtained by B.

In other words:

To send a message to a particular recipient so that only that recipient can read it, you obtain that

recipient's public key, encrypt the message with it, and send the encrypted message. No matter who

intercepts the message, it can be decrypted only by the intended recipient, with the recipient's private

key.

This is perfectly secure for simply sending messages to specified recipients such that no-one else can read

them. However, there is a problem from the recipient's - A's - point of view. How does A know that the

message has actually come from B? Anyone could obtain A's public key and send an encrypted message to

A, but claim to be B. If the nature of the message needs some guarantee of the identity of the sender, then a

greater degree of security is needed, such as using a Digital Signature.

Digital Signatures

When you send a letter to someone, you sign your name at the end. The purpose of this is to authenticate

you as the sender, and written signatures have long been used to authenticate the identity of a person. A

digital signature serves the same purpose - if A receives a message from B containing B's digital signature,

then A can be certain that that message did actually originate from B and it is not a forgery. (As always,

this is subject to private keys being kept private, and keys being long enough to prevent computer cracking

of the keys. You could argue that this is in fact much more secure than traditional written signatures etc.

ever were). Here's one method:

© G. Lockwood 2006 2

1. B writes the (plaintext) message for A, including a date & time stamp.

2. B then uses a hash formula to create a "message digest" of the time-stamped message. (This is

something like a checksum, whose value depends on the whole message including its timestamp.

Any subsequent tampering with the message would invalidate the message digest).

3. The message digest is immediately encrypted with B's private key (meaning that only B could have

produced this message digest. This is effectively a digital signature).

4. The encrypted message digest is appended to the plaintext message, and the resulting text is

encrypted with A's public key (so that it will be readable only by A).

5. The encrypted text is sent.

6. A receives the ciphertext, and decrypts it with A's private key, getting the plaintext message plus a

still-encrypted message digest.

7. A obtains B's public key, and uses it to decrypt the message digest.

8. A uses the same hash algorithm (there's no secrecy needed with this - it merely computes a value

which depends on the entire text, similarly to a checksum) on the plaintext message, generating a

message digest of the received message.

9. A then compares the decrypted message digest with that computed from the received message. If

they're the same, then this confirms that the received message is indeed what was sent, i.e. it hasn't

been tampered with.

The weak link in this is that there is a possibility that the message could have originated from someone

purporting to be B, e.g. C. For B above, read C throughout, where C claims to be B. In step 7, C manages

to replace B's public key by C's, a not-too-difficult process. This problem can be ameliorated by the use of

a Digital Certificate. Basically, this requires the use of a "trusted third party" - a Certificating Authority.

Such an authority investigates the identity of an individual, then supplies that individual with an encrypted

public key, encrypted by the Certificate Authority's private key. If both sender and recipient accept the

Certificate Authority as being trustworthy, then B's public key obtained in this way must be genuinely B's,

and not C's. Step 7 above would read:

7. A receives from B also a copy of B's public key, which has been encrypted by the Certificate

Authority's private key, and which A now decrypts using the Certificate Authority's public key.

Wikipedia is a good source of further information and links on this topic, e.g.

http://en.wikipedia.org/wiki/Certificate_authority

© G. Lockwood 2006 3

hash formula

encrypt with B's
private key

encrypt with A's public key

SEND

(only A can
decrypt it since it
needs A's private

key)

B

A

decrypt with A's

private key hash

formula

decrypt
with B's

public key

Original time-

stamped

message

B
message

digest

encrypted

message

digest

message plus encrypted

digest

encrypted (message plus

encrypted digest)

encrypted (message plus

encrypted digest)

original message

plus encrypted

digest

original

message

encrypted

digest

new

message

digest

message

digest

COMPARE - if
the same,
message is
genuine.

A sent by B encrypted with Certificate
Authority's private key, and decrypted
by A using C.A.'s public key. Certifies

that B's public key really is B's.

A message digest is
sometimes called a
DIGITAL FINGERPRINT

